Manganese-Enhanced MRI for Preclinical Evaluation of Retinal Degeneration Treatments.

نویسندگان

  • Rebecca M Schur
  • Li Sheng
  • Bhubanananda Sahu
  • Guanping Yu
  • Songqi Gao
  • Xin Yu
  • Akiko Maeda
  • Krzysztof Palczewski
  • Zheng-Rong Lu
چکیده

PURPOSE Apply manganese-enhanced magnetic resonance imaging (MEMRI) to assess ion channel activity and structure of retinas from mice subject to light-induced retinal degeneration treated with prophylactic agents. METHODS Abca4(-/-)Rdh8(-/-) double knockout mice with and without prophylactic retinylamine (Ret-NH2) treatment were illuminated with strong light. Manganese-enhanced MRI was used to image the retina 2 hours after intravitreous injection of MnCl2 into one eye. Contrast-enhanced MRIs of the retina and vitreous humor in each experimental group were assessed and correlated with the treatment. Findings were compared with standard structural and functional assessments of the retina by optical coherence tomography (OCT), histology, and electroretinography (ERG). RESULTS Manganese-enhanced MRI contrast in the retina was high in nonilluminated and illuminated Ret-NH2-treated mice, whereas no enhancement was evident in the retina of the light-illuminated mice without Ret-NH2 treatment (P < 0.0005). A relatively high signal enhancement was also observed in the vitreous humor of mice treated with Ret-NH2. Strong MEMRI signal enhancement in the retinas of mice treated with retinylamine was correlated with their structural integrity and function evidenced by OCT, histology, and a strong ERG light response. CONCLUSIONS Manganese-enhanced MRI has the potential to assess the response of the retina to prophylactic treatment based on the measurement of ion channel activity. This approach could be used as a complementary tool in preclinical development of new prophylactic therapies for retinopathies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PRECLINICAL AND CLINICAL IMAGING - Mini-Review Magnetic Resonance Imaging of the Retina: From Mice to Men

This mini-review provides an overview of magnetic resonance imaging (MRI) applications to study rodent, cat, non-human primate, and human retinas. These techniques include T1and T2-weighted anatomical, diffusion, blood flow, blood volume, blood-oxygenation level dependent, manganese-enhanced, physiological, and functional MRI. Applications to study the retinas in diabetic retinopathy, glaucoma,...

متن کامل

In Vivo Evaluation of White Matter Integrity and Anterograde Transport in Visual System After Excitotoxic Retinal Injury With Multimodal MRI and OCT.

PURPOSE Excitotoxicity has been linked to the pathogenesis of ocular diseases and injuries and may involve early degeneration of both anterior and posterior visual pathways. However, their spatiotemporal relationships remain unclear. We hypothesized that the effects of excitotoxic retinal injury (ERI) on the visual system can be revealed in vivo by diffusion tensor magnetic resonance imagining ...

متن کامل

Magnetic resonance imaging of the retina: from mice to men.

This mini-review provides an overview of magnetic resonance imaging (MRI) applications to study rodent, cat, non-human primate, and human retinas. These techniques include T(1) - and T(2) -weighted anatomical, diffusion, blood flow, blood volume, blood-oxygenation level dependent, manganese-enhanced, physiological, and functional MRI. Applications to study the retinas in diabetic retinopathy, g...

متن کامل

Manganese-enhanced MRI reveals multiple cellular and vascular layers in normal and degenerated retinas.

PURPOSE To use manganese-enhanced magnetic resonance imaging (MEMRI) at 25 × 25 × 800 μm(3) to image different retinal and vascular layers in the rat retinas. MATERIALS AND METHODS Manganese-chloride was injected intraocularly in normal (n = 5) and Royal College of Surgeons (RCS, an model of photoreceptor degeneration) (n = 5) rats at postnatal day 90. MEMRI at 4.7 T was performed 24 hours la...

متن کامل

Magnetic resonance in studies of glaucoma

Glaucoma is the second leading cause of blindness. It affects retinal ganglion cells and the optic nerve. However, there is emerging evidence that glaucoma also affects other components of the visual pathway and visual cortex. There is a need to employ new methods of in vivo brain evaluation to characterize these changes. Magnetic resonance (MR) techniques are well suited for this purpose. We r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 56 8  شماره 

صفحات  -

تاریخ انتشار 2015